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Free-Radical Concentration in Polymerizations
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Synopsis

A method is described for deriving by digital computer a temperature program
which, when applied to batch polymerization, will keep the supply of new free radicals
constant throughout the main part of the reaction.

OBJECTIVE

It is well known that sharper molecular weight distributions, avoiding
high molecular weight tails have better molding characteristics for other-
wise similar properties. Ewvidence indicates that in free-radical-initiated
polymerizations sharper molecular weight distributions can be obtained by
running the reaction as much as possible under a constant and steady sup-
ply of free radicals.

The manual calculation of these reaction conditions is cumbersome and
time consuming because of the complexity of the total rate equation de-
scribing the process.

Given the concentration percentage, activation energy, frequency fac-
tor, and the molecular weight for each of the initiators present and the
starting temperature, the computer program calculates the rate of produc-
tion of free radicals and the time/temperature relationship which will
maintain this rate.

DERIVATION

Unsaturated monomers are often converted to polymers by a chain
reaction involving a freeradical mechanism. A free radical attacks an
unsaturated monomer (e.g., styrene)

R + CH~CH — R—CH,—CH
[ l + cm-=5

R—CH,~CH—CH,—CH — etc.

leading to long polymer molecules.
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The initial free radicals R° are often generated by the thermal decom-
position of initiators (often referred to inaccurately as catalysts). The
most commonly used free-radical initiators are organic peroxides, such as
di-tert-butyl peroxide, fert-butyl perbenzoate, benzoyl peroxide, etc. Butyl
peroxide, e.g., decomposes under heating as follows:

(‘JHa C|Hs CIHB
CHa—C——O——O—(I}'-—CHs - 2 CHs—Cl——O °
CH, CH;, CH;

where a molecule of peroxide produces two free radicals.

Organic peroxides also decompose in part by a self-induced mechanism
whereby radicals from the thermal decomposition attack other peroxide
molecules. This induced decomposition is not considered in this program
although the equations and program could be readily modified to take it into
account. At the low initiator concentrations commonly used in poly-
merizations the induced decomposition is of secondary importance.

The rate of generation of free radicals is primarily of the first order:

dR]/dt = — 2d[C]/dt = ks [C] @G

where C is the initiator concentration in molar equivalents, and %; = the
rate constant. The factor 2 is ineluded since every initiator molecule splits
into two free radicals. £, is a function of temperature following the well-
known Arrhenius equation:

ks = Ae”F/FT @

where A is the frequency factor, K is the activation energy, B the gas
constant, and T the absolute temperature. The initiator concentration, as
derived from (1), drops exponentially:

[C] = [Cole™™ 3)

where Cy is the initial initiator concentration.
By substituting (2) into (3) we obtain the initiator concentration in func-
tion of both time and temperature:

[C] = [Co] exp { —Ae™F/ET1} @)
and by substituting (4) into (1) we obtain:
d[R]/dt = 2 Ae™/ET[C,] exp { — e~ F/F7t}

Or more generally:

d—fil—f—] = ; 2 A~ BT [Cy,] exp { —A "%t} (5)

where the summation sign is added for the case of more than one initiator
from one to n.

We now ask the computer for the proper temperature or time relation-
ship, which will keep eq. (5) constant.
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COMPUTER SOLUTION

Procedure

Direct calculation of the temperature-time function which will maintain
a constant rate of generation of free radicals is not possible. To solve this
function between some given initial conditions and a given maximum ter-
minal temperature, a very simple adaptation of Euler’s method was pro-
grammed for the IBM System 360. The solution is based on the assump-
tion that, for very small time periods, the entire system of variables is
linear.

For each time period, At¢, between times ¢, and {44, the following itera-
tions are applied. The temperature is assumed constant for At at the
level computed for #,, The rate constant, k,, is therefore also constant for
At from (2), and the concentration at £,41 is computed by (3). The rate of
generation of free radicals is then computed by (1) using the average con-
centration during Az. If this rate is within acceptable limits from the initial
rate, {,+1 becomes {, for the next time period. If the calculated rate is
below acceptable limits, the temperature is incremented by some small
amount and the entire set of computations is repeated for the period.
Incrementation of the temperature followed by recomputation will con-
tinue until the computed rate of generation of free radicals equals the
initial rate; then and only then does computation proceed with the next
period. The program ends when a given maximum temperature is reached
(see Fig. 1).

Discussion of Accuracy

Accuracy depends on the size of the time period over which linearity is
assumed. The smaller the time period, the more accurate the computa-
tions. The sample program sets Af equal to 0.01 hr, Rather than per-
form rigorous analysis, At was modified to 0.1 hr. and the program was
rerun. At 37 hr. the temperature differed by 0.1°C. from that calculated
with At set to 0.01. We feel justified in the inference that computation
with Aé equal to 0.01 will yield results well within the limits of practical
temperature control.

SAMPLE CASES

In the first sample case a temperature/time curve is calculated for a
polymerization reaction containing a mixture of three peroxides. The
three peroxides are benzoyl peroxide, tertiary butyl perbenzoate, and
dicumyl peroxide. For each peroxide the activation energy was taken
from the literature.! The Arrhenius constants were calculated from the
first-order rate constants given in the same publication.!

The results obtained are given in Table I.
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INITIALIZATION
Read Data
Print Headings

y
kg = £ (T)
Equation 2

C at end of
N Period = £(Ckgs)
< TingT ° Equation 3 O 9
YES
AR = £lexy) d®Y= £(C,kq)
de dt
Equation 1 Equation 1

Increment
Count by 1|g—¥YE:

TOO
LOW

count <100 | Increment
Temperature
by .5°K

Count=100

Temp} 200°C

PRINT
Time
and ] END
Temp

INCREMENT
Time by
100 times 4zt

C at end of last
period becomes
Coat start of
next period

Fig. 1. Flow sheet.
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Fig. 2. Temperature-time relationship for constant free-radical production.

Table I also shows the concentrations used in the first sample case.

In

the second sample case the temperature/time curve for a polymeriza-

tion initiated with a single peroxide is calculated.

Benzoyl peroxide is being used at a concentration of 0.12 X 10~2? moles/1.
The absolute amount of initiator does, of course, not affect the calculation
of the temperature/time relationship, it merely affects the rate of radical

TABLE 1
Activation )
energy, 1st Case conc.,
Peroxide keal. /mole A, per hr. moles/l.
Dicumyl peroxide 40.7 0.46233 X 1022 0.2 X 102
tert-Butyl perbenzoate 34.7 0.81128 X 101® 04 X 1072
Benzoyl peroxide 29.6 0.37995 X 10# 0.6 X 102

production to be kept constant by that relationship.

But in a case of a

mixture of initiators, the relative concentrations of these initiators do
indeed influence the outcome of the temperature/time relationships.

The code listings are given in the printout and the solutions to the sample
cases are shown in Figure 2.

As can be seen, a mixture of peroxides allows one to effect a polymeriza-
tion reaction at a lower temperature over a longer period of time. This is
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well known. The computer program given in this article allows one to
take optimum advantage of this knowledge.

In practice, one would program the temperature in function of time as
given by the calculated relationship for as long as possible or until limited
by other factors not considered in our computer program. These other
factors may be several, such as excessive temperature or the Trommsdorff?
effect. Excessive temperature is self-explanatory: for some reason, a given
polymerization temperature should not be exceeded in certain polymeriza-
tions, either because the rate of depolymerization equals that of polymeriza-
tion (ceiling temperature) or because side-reactions start taking an effect
on either monomer or polymer. The Trommsdorft? effect is related to an
increase in viscosity which causes the chain-termination reaction to slow
down. Thereby the concentration of free radicals increases—hence also
the rate of polymerization. Furthermore, the slowdown of the termina-
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tion reaction results in the production of higher molecular weight polymers.
For these and other reasons, the temperature/time relationship will usually
not be followed during the entire course of a polymerization reaction.
However, the relationship will still prove useful for optimum control of the
initial and intermediate stages of polymerizations and the produetion of
sharper molecular weight distributions.
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Résumé

Une méthode est décrite pour mettre au point grice & un calculateur digital un pro-
gramme de température qui, appliqué 3 la polymérisation, permet de garder la formation
de radicaux libres constante tout le long de la partie principale de la réaction.

Zusammenfassung

Eine Digitalcomputermethode zur Aufstellung eines Temperaturprogammes wird
beschrieben, das eine Konstanthaltung der Radikalnachlieferung wihrend des Haupt-
teils der Reaktion in einem Polymerisationsansatz gewahrleistet.
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